International Scientific Committee

Erkki Ikonen (Chair) FI CIE Vice-President Technical
Tony Bergen AU CIE Australia President
Peter Blattner CH Director of CIE Division 2
Ian Cowling AU CIE Australia Secretary
Steve Fotios GB CIE United Kingdom
Veronica Garcia-Hansen AU CIE Australia
Dionyz Gasparovsky SK Associate Director of CIE Division 4
Ron Gibbons US Director of CIE Division 4
Po-Chieh Hung JP Director of CIE Division 8
Nana Itoh JP Associate Director of CIE Division 1
Steve Jenkins AU CIE Australia
Youngshin Kwak KR Director of CIE Division 1
Ronnier Luo GB CIE Vice-President Publications
John O’Hagan GB Director of CIE Division 6
Peter Schwarcz HU Director of CIE Division 5
Shu Takeshita JP Associate Director of CIE Division 6
Jennifer Veitch CA Director of CIE Division 3
Peter Zwick AT CIE Technical Manager
Joanne Zwinkels CA Associate Director of CIE Division 2

International Organizing Committee

Yoshi Ohno (Chair) US CIE President
Tony Bergen AU CIE Australia President
Richard Distl DE CIE Treasurer
Erkki Ikonen FI CIE Vice-President Technical
Ronnier Luo GB CIE Vice-President Publications
Kathryn Nield AT CIE General Secretary

Any mention of organizations or products does not imply endorsement by the CIE. Whilst every care has been taken in the compilation of any lists, up to the time of going to press, these may not be comprehensive.

Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from CIE Central Bureau at the address below.

CIE Central Bureau
Babenbergerstrasse 9
A-1010 Vienna, AUSTRIA
Tel: +43(1)714 31 87
e-mail: ciecb@cie.co.at
www.cie.co.at

© CIE 2016 - All rights reserved
The following table provides an overview of the oral presentations, presented posters and posters presented at the conference. The papers are published in the proceedings in consecutive order of presentation. Papers that have not been submitted are marked as such ("n.s.").

The authors are responsible for the contents of their papers.

Please note: For direct access of a paper click on the respective page number.

<table>
<thead>
<tr>
<th>Invited Presentations</th>
<th>Oral Presentations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page</td>
<td>Page</td>
</tr>
<tr>
<td>Invited Presentations</td>
<td>oral Presentations</td>
</tr>
<tr>
<td>IT01 Ramus, B.</td>
<td>OP01 Padfield, J. et al.</td>
</tr>
<tr>
<td>(Chair: Erkki Ikonen, FI)</td>
<td>OPTIMISATION OF ARTWORK ILLUMINATION SPECTRA BY MUSEUM PROFESSIONALS</td>
</tr>
<tr>
<td>IT02 Hurlbert, A.</td>
<td>OP02 Chou, C.J. et al.</td>
</tr>
<tr>
<td>Tuning light to see and feel better: The human visual and non-visual responses to spectral variations in light</td>
<td>MUSEUM LIGHTING: DESIGN MAIN-COLOR BASED COLOR RENDER INDEX</td>
</tr>
<tr>
<td>IT03 King, B.</td>
<td>OP03 Abdalla, D. et al.</td>
</tr>
<tr>
<td>Australian and New Zealand Road Lighting - Applying Advanced Energy Performance Metrics</td>
<td>CUSTOMIZATION OF LIGHT SOURCE SPECTRUM TO MINIMIZE LIGHT ABSORBED BY ARTWORK</td>
</tr>
<tr>
<td>OP04 Wei, M. et al.</td>
<td>OP05 Jakubiec, J.A. et al.</td>
</tr>
<tr>
<td>EFFECT OF GAMUT SHAPE ON COLOUR PREFERENCE</td>
<td>ACCURATE MEASUREMENT OF DAYLIT INTERIOR SCENES USING HIGH DYNAMIC RANGE PHOTOGRAPHY</td>
</tr>
<tr>
<td>OP06 Robinson, K. et al.</td>
<td>OP07 Sullivan, J.T., Donn, M.</td>
</tr>
<tr>
<td>DETECTION OF LUMINANCE DIFFERENCES ACROSS ARCHITECTURAL SPACES</td>
<td>LIGHT DISTRIBUTION AND SPATIAL BRIGHTNESS: RELATIVE IMPORTANCE OF THE WALLS, CEILING, AND FLOOR</td>
</tr>
<tr>
<td>OP08 Van de Perre, L. et al.</td>
<td>OP09 Young, R. et al.</td>
</tr>
<tr>
<td>CONTRAST METRICS EVALUATION</td>
<td>ACCURATE ESTIMATION OF COLOUR UNCERTAINTIES USING A SIMPLIFIED MODEL</td>
</tr>
<tr>
<td>UNCERTAINTY EVALUATION OF SPECTRAL INTEGRALS FOR LED LAMPS</td>
<td>OPTICAL DETECTOR WITH DESIGNABLE SPECTRAL RESPONSIVITY</td>
</tr>
<tr>
<td>OP12 Schneider, P. et al.</td>
<td>OP13 Gu, H.T. et al.</td>
</tr>
<tr>
<td>LASER BASED CALIBRATED V(\lambda) TRAP DETECTOR</td>
<td>COMPARING THE QUALITY OF THE LED BASED AND CONVENTIONAL CIE ILLUMINANT SIMULATORS</td>
</tr>
<tr>
<td>OP14</td>
<td>Ma, S. et al.</td>
</tr>
<tr>
<td>OP15</td>
<td>Ou, L.</td>
</tr>
</tbody>
</table>

PA2-2 Interior applications - Glare (1)
OP16	Safdar, M. et al.	THE HUMAN VISION MODEL TO PREDICT DISCOMFORT GLARE FROM LUMINANCE IMAGE	125
OP17	Hansen, P. et al.	GLARE CAUSED BY CONTRAST BETWEEN TASK AND IMMEDIATE SURROUND: AN EVALUATION OF LUMINANCE DISTRIBUTION IN THE FIELD OF VIEW	132
OP18	Donners, M. et al.	A PSYCHOPHYSICAL MODEL OF DISCOMFORT GLARE IN BOTH OUTDOOR AND INDOOR APPLICATIONS	142

PA2-3 CIE Strategy on LED based calibration standards
OP21	Liu, H. et al.	CHARACTERIZATION OF MODIFIED LED LAMPS FOR LUMINOUS FLUX STANDARD	152
OP20	Zwinkels, J.C.	CCPR ACTIVITIES RELATED TO LED BASED CALIBRATION STANDARDS	157
OP19	Poikonen	REVIEW OF CHALLENGES AND DISADVANTAGES OF POSSIBLE LED-BASED PHOTOMETRIC STANDARDS	n.s.

PA3-1 Colour quality (3)
OP22	Smet, K.A.G. et al.	ON THE IMPORTANCE OF COLOR SPACE UNIFORMITY AND SAMPLESET SPECTRAL UNIFORMITY FOR COLOR FIDELITY MEASURES	166
OP23	Ohno, Y.	VISION EXPERIMENT II ON WHITE LIGHT CHROMATICITY FOR LIGHTING	175
OP24	Teunissen, C.	A FRAMEWORK FOR EVALUATING THE MULTIDIMENSIONAL COLOR QUALITY PROPERTIES OF WHITE LED LIGHT SOURCES	185

PA3-2 Interior applications - Glare (2)
OP25	Scheir, G.H. et al.	VISUAL DISCOMFORT PREDICTION BASED ON RECEPTIVE FIELDS	195
OP58	Goovaerts, C., Descamps, F.	STRATEGY FOR VISUAL COMFORT CONTROL THROUGH ANALYSIS OF HIGH DYNAMIC RANGE IMAGES AND ACTUATION OF VENETIAN BLINDS	204
OP27	Hirning, M.B. et al.	DISCOMFORT GLARE IN ENERGY EFFICIENT BUILDINGS: A CASE STUDY IN THE MALAYSIAN CONTEXT	212

PA4-1 Light and vision
OP31	Wang, L. et al.	INFLUENCE OF CONTRAST AND COLOR ON THE VISIBILITY OF THE STROBOSCOPIC EFFECT OF TEMPORAL MODULATED LEDS	224
OP32	Lee, C.-S. et al.	EFFECT OF COLOR AND LUMINANCE INTENSITY ON THE PHANTOM ARRAY	232
OP33	Xu, L. et al.	THE DEVELOPMENT OF A COLOUR DISCRIMINATION INDEX	241

PA4-2 Interior applications – Efficiency and visual perception quality (2)
<p>| OP34 | Hu, Y. et al. | ASSESSING UNIFORMITY OF ILLUMINANCE BASED ON A LED TUNABLE SYSTEM | 247 |</p>
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>OP37</td>
<td>LUMINANCE RESOLUTION OF LIGHTING CONTROL SYSTEMS: USABILITY AND ENERGY CONSERVATION</td>
<td>Hu, W., Davis, W.</td>
<td>253</td>
</tr>
<tr>
<td>OP52</td>
<td>PROPOSAL OF A METHOD FOR ASSESSMENT OF ENERGY PERFORMANCE OF LIGHTING IN RESIDENTIAL BUILDINGS</td>
<td>Gasparovsky, D. et al.</td>
<td>264</td>
</tr>
<tr>
<td>PA4-3</td>
<td>Exterior applications – Efficiency and visual perception quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OP38</td>
<td>VARYING FACIAL Expressions IN STUDIES OF INTERPERSONAL JUDGEMENTS AND PEDESTRIAN LIGHTING</td>
<td>Fotios, S. et al.</td>
<td>275</td>
</tr>
<tr>
<td>OP39</td>
<td>LUMINANCE CONTRAST STUDY OF LED TRAFFIC SIGNS</td>
<td>Chen, Y.C. et al.</td>
<td>283</td>
</tr>
<tr>
<td>OP50</td>
<td>MAINTENANCE FACTOR FOR STREET LIGHTING</td>
<td>Van Heur, R.J. et al.</td>
<td>287</td>
</tr>
<tr>
<td>PA5-1</td>
<td>Photobiological effects and their measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OP41</td>
<td>EFFECTS OF LIGHTING PARAMETERS ON WORK PERFORMANCE USING COMPREHENSIVE METHODS</td>
<td>Wang, M.L. and Luo, M.R.</td>
<td>294</td>
</tr>
<tr>
<td>OP42</td>
<td>THE EFFECT OF CCT-CHANGING DYNAMIC LIGHT ON HUMAN ALERTNESS</td>
<td>Zheng, S.Q. et al.</td>
<td>300</td>
</tr>
<tr>
<td>OP43</td>
<td>CONSIDERATION ON SAFETY FACTORS APPLIED TO A SIMPLIFIED APPROACH TO EVALUATE BLUE LIGHT HAZARD OF GENERAL LIGHT SOURCES BY MEANS OF PHOTOMETRY</td>
<td>Shitomi, H. and Suzuki, K.</td>
<td>305</td>
</tr>
<tr>
<td>PA5-2</td>
<td>Characterization of LEDs and OLEDs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OP30</td>
<td>HIGH SPEED MEASUREMENT METHODS FOR LARGE AREA OLEDs</td>
<td>Leise, N. et al.</td>
<td>311</td>
</tr>
<tr>
<td>OP56</td>
<td>MULTI-DOMAIN MODELING OF POWER LEDS BASED ON MEASURED ISOHERMAL I-V-L CHARACTERISTICS</td>
<td>Poppe, A. et al.</td>
<td>318</td>
</tr>
<tr>
<td>OP57</td>
<td>SOLID-STATE LIGHTING MEASUREMENT ASSURANCE PROGRAM SUMMARY WITH ANALYSIS OF METADATA</td>
<td>Miller, C.C. et al.</td>
<td>328</td>
</tr>
<tr>
<td>PA5-3</td>
<td>Road lighting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OP47</td>
<td>ON SITE ROAD SURFACE CHARACTERIZATION</td>
<td>Rossi, G. et al.</td>
<td>334</td>
</tr>
<tr>
<td>OP48</td>
<td>ROAD LIGHTING FOR AGEING DRIVERS – A USERS’ PERSPECTIVE</td>
<td>Donners, M.A.H et al.</td>
<td>345</td>
</tr>
<tr>
<td>OP49</td>
<td>ANALYSIS OF ROAD LIGHTING AUTOMATION SCENARIOS ACCORDING TO VISIBILITY PERFORMANCE</td>
<td>Buyukkinaci, B. et al.</td>
<td>355</td>
</tr>
<tr>
<td>PA6-1</td>
<td>Interior applications - Visual comfort</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OP45</td>
<td>MEASUREMENT OF LUMINANCE DISTRIBUTION OF SPORTS LIGHTING - TOWARD DEVELOPMENT OF EVALUATION METHOD FOR LED SPORTS LIGHTING ‘GLARE’</td>
<td>Iwata, T. et al.</td>
<td>365</td>
</tr>
<tr>
<td>OP44</td>
<td>GAZE RESPONSIVE VISUAL COMFORT: NEW FINDINGS ON GAZE BEHAVIOUR IN A DAYLIT OFFICE SPACE IN RELATION TO GLARE</td>
<td>Sarey Khanie, M. et al.</td>
<td>373</td>
</tr>
<tr>
<td>OP46</td>
<td>REDUCING LUMINANCE CONTRAST ON THE WINDOW WALL AND USERS’ INTERVENTIONS IN AN OFFICE ROOM</td>
<td>Amirkhani, M. et al.</td>
<td>385</td>
</tr>
</tbody>
</table>
PA6-3 Mesopic photometry

<table>
<thead>
<tr>
<th>OP53</th>
<th>Winter, J. et al.</th>
<th>GAZE BEHAVIOUR WHEN DRIVING AFTER DARK ON MAIN AND RESIDENTIAL ROADS</th>
<th>395</th>
</tr>
</thead>
<tbody>
<tr>
<td>OP54</td>
<td>Uchida, T., Ohno, Y.</td>
<td>M/P RATIO METHOD FOR MESOPIC LUMINANCE MEASUREMENT</td>
<td>402</td>
</tr>
<tr>
<td>OP55</td>
<td>Lau, S. et al.</td>
<td>A NEW MEASUREMENT SOLUTION FOR MESOPIC PHOTOMETRY OF ROAD LIGHTING</td>
<td>410</td>
</tr>
</tbody>
</table>

Presented Posters

<table>
<thead>
<tr>
<th>PS1 Lighting and Lighting Quality</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP01 Chien, S.-C. et al.</td>
<td>AN INTEGRATED CYBER-PHYSICAL MODEL TOWARDS HIGH-PERFORMANCE LIGHTING SYSTEMS OPERATION</td>
</tr>
<tr>
<td>PP02 Luo, T. et al.</td>
<td>A NEW SIMULATION METHOD FOR PREDICTING LIGHTING ENERGY CONSUMPTION OF OPEN-PLAN OFFICES</td>
</tr>
<tr>
<td>PP03 Kobav, M.B., Bizjak, G.</td>
<td>SPATIAL DISTRIBUTION OF SKY LUMINANCE AND CCT</td>
</tr>
<tr>
<td>PP04 Wang, Y.Z. et al.</td>
<td>SKIN LIGHTING STUDY BASED ON MULTISPECTRAL IMAGES</td>
</tr>
<tr>
<td>PP06 Yang, Y. et al.</td>
<td>GLARE MODEL FOR NON-UNIFORM WHITE LED LUMINAIRES</td>
</tr>
<tr>
<td>PP08 Nilsson Tengelin, M., Källberg, S.</td>
<td>EVALUATION OF LIGHTING AND VISUAL COMFORT IN SWEDISH CLASSROOMS</td>
</tr>
<tr>
<td>PP09 Yuan, Y. et al.</td>
<td>EFFECTS OF AGE AND GENDER ON VISUAL COMFORT FOR READING USING WHITE LED LIGHTS</td>
</tr>
<tr>
<td>PP10 Sekulovski, D.</td>
<td>MEASURING TEMPORAL LIGHT QUALITY</td>
</tr>
<tr>
<td>PP26 Koga, Y. et al.</td>
<td>TOWARDS THE NEW GENERATION OF LIGHTING DESIGN FOR ADVANCED CONTAINER TERMINALS</td>
</tr>
<tr>
<td>PP27 Shen, H. et al.</td>
<td>FAST MEASUREMENT METHOD FOR SKY PERCENTAGE IN TUNNEL LIGHTING</td>
</tr>
</tbody>
</table>

PS2 Colour Quality / Photobiology / Measurements

<p>| PP11 Yang, T.H., et al. | OBJECT COLOUR DIFFERENCE ARISING FROM LIGHT SOURCES WITH VARIOUS CCT | 483 |
| PP12 Wang, M. et al. | SKIN COLOUR MEASUREMENT BY USING NON-CONTACT METHODS | 487 |
| PP13 Chalmers, A.N., Soltic, S. | EXPERIMENTS IN COLOUR RENDERING ASSESSMENT | 493 |
| PP14 Oh, S. et al. | COLOR APPEARANCE OF LED LIGHTS | 500 |
| PP15 Wen, C.H. et al. | INVESTIGATION OF FLICKER METRICS FOR LIGHTING ON HIGH SPEED ROADS | 505 |
| PP16 Dubnička, R., Gasparovsky, D. | ANALYSIS OF VISUAL FIELD OF OBSERVER IN CONNECTION WITH THE ADAPTATION LUMINANCE DETERMINATION IN MESOPIC PHOTOMETRY | 513 |
| PP17 Donners, M.A.H. et al. | EXPERIMENTAL EVALUATION OF LONG-TERM ECO-SYSTEM EFFECTS OF ARTIFICIAL LIGHTING ON A FORREST EDGE | 523 |</p>
<table>
<thead>
<tr>
<th>Posters</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>P01</td>
<td>Lorphèvre, R. et al.</td>
</tr>
<tr>
<td>P02</td>
<td>Lorphèvre, R. et al.</td>
</tr>
<tr>
<td>P03</td>
<td>Dubnička, R. et al.</td>
</tr>
<tr>
<td>P04</td>
<td>Dubnička, R. et al.</td>
</tr>
<tr>
<td>P05</td>
<td>Forberg, L.-F et al.</td>
</tr>
<tr>
<td>P06</td>
<td>Davoudian, N., Mansouri, A.A.</td>
</tr>
<tr>
<td>P07</td>
<td>Preciado, O.U., Manzano, E.R.</td>
</tr>
<tr>
<td>P08</td>
<td>Lee, M. et al.</td>
</tr>
<tr>
<td>P09</td>
<td>Wang, S., Zhao, J.</td>
</tr>
<tr>
<td>P10</td>
<td>Yoo, S. et al.</td>
</tr>
<tr>
<td>P11</td>
<td>Miyamoto, M. et al.</td>
</tr>
<tr>
<td>P12</td>
<td>Pong, B.J. et al.</td>
</tr>
<tr>
<td>P13</td>
<td>Li, N. et al.</td>
</tr>
<tr>
<td>P14</td>
<td>Van Heur, R.J., Deswert, J.M.</td>
</tr>
<tr>
<td>No.</td>
<td>Author(s)</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------------</td>
</tr>
<tr>
<td>P15</td>
<td>Pak, H. et al.</td>
</tr>
<tr>
<td>P16</td>
<td>Maki Ichihara, JP</td>
</tr>
<tr>
<td>P17</td>
<td>Kato, M. et al.</td>
</tr>
<tr>
<td>P18</td>
<td>Suzuki, N. et al.</td>
</tr>
<tr>
<td>P19</td>
<td>Kunishima, M. et al.</td>
</tr>
<tr>
<td>P20</td>
<td>Kirsch, R., Durmus, D.</td>
</tr>
<tr>
<td>P21</td>
<td>Mochizuki, E., Iwata, T.</td>
</tr>
<tr>
<td>P22</td>
<td>Chen, M.K. et al.</td>
</tr>
<tr>
<td>P24</td>
<td>Zhao, J. et al.</td>
</tr>
<tr>
<td>P25</td>
<td>Ishida, T. et al.</td>
</tr>
<tr>
<td>P26</td>
<td>Georgoula M. et al.</td>
</tr>
<tr>
<td>P27</td>
<td>Iacomussi, P. et al.</td>
</tr>
<tr>
<td>P28</td>
<td>Kozaki, T. et al.</td>
</tr>
<tr>
<td>P29</td>
<td>Bartsev, A.A. et al.</td>
</tr>
<tr>
<td>P30</td>
<td>Bartsev, A.A. et al.</td>
</tr>
<tr>
<td>P31</td>
<td>Velásquez, C. et al.</td>
</tr>
<tr>
<td>P32</td>
<td>Roman Dubnicka, SK</td>
</tr>
</tbody>
</table>