PROCEEDINGS of CIE Centenary Conference „Towards a New Century of Light“

April 15/16, 2013

Paris, France
International Scientific Committee:
(in alphabetical order):

Jean Bastie (DIV2, FR) PhD, (retired from INM/CNAM as Head of the Optical Radiation Measurement Department)

Peter Blattner (DIV2, CH) PhD, Head of Optics, Federal Institute of Metrology (METAS), CH, Director CIE Division 2

Jean-Michel Deleuil (DIV4, FR) PhD, Prof. at the Environment and Urban Planning Department, INSA engineer school, FR

Dominique Dumortier (DIV3, FR) PhD, Vice-Director of LASH laboratory, ENTPE engineering school, FR

Christine Fernandez-Maloigne (DIV8, FR) PhD, Prof, Director of SIC laboratory, University of Poitiers, FR

Marc Fontoynont (DIV3, FR) PhD, Prof at Aalborg University in Copenhagen, DK

Ron Gibbons (DIV4, US) PhD, FIES, Director, Center Infrastructure Based Safety Systems, Virginia Tech Transportation Institute, US, Associate Director CIE Division 4

Teresa Goodman (VPP, GB) Principal Research Scientist in the Optical Radiation Measurement Group at the National Physical Laboratory (NPL), GB, CIE Vice President Publications

Jacques Lecocq (DIV5, FR) Application Support Manager, Thorn Lighting, FR

Ronnier Luo (DIV1, GB) PhD, Professor of Zhejiang University (CN), Leeds University (GB), Colour and Imaging Science, National Taiwan University of Science and Technology (Chair), Director CIE Division 1

Jan Morovic (DIV8, GB) PhD, Senior Color Scientist, Hewlett-Packard Company, GB, Director CIE Division 8

John O’Hagan (DIV6, GB) PhD, UK Health Protection Agency; Visiting Fellow, Loughborough University, GB, Director CIE Division 6

Yoshi Ohno (Chair, US) PhD, NIST Fellow and the Group Leader for Lighting and Color Group at Sensor Science Division, National Institute of Standards and Technology, US, CIE Vice President Technical Publications

Peter Schwarcz (DIV5, HU) Director CIE Division 5

Jennifer Veitch (DIV3, CA) PhD, Senior Research Officer in the National Research Council of Canada, Institute for Research in Construction, CA

Françoise Viénot (DIV1, FR) PhD, Prof. Emeritus at the National Museum of Natural History (MNHN), FR

Peter Zwick (CB) PhD, Technical Manager CIE Central Bureau
International Organising Committee:
Conference Presidency:
Ann Webb
Cyril Chain

Members (in alphabetical order):
Marie-Pierre Alexandre
Marc Fontoynont
Teresa Goodman
Yoshi Ohno
Martina Paul
Lorne Whitehead

Local Organising Committee:
(in alphabetical order):
Marie-Pierre Alexandre
Jean Bastie
Cyril Chain (Chair)
Éric Dumont
Dominique Dumortier
Alain Azaïs
Jean-Jacques Ezrati
Christine Fernandez-Maloigne
Alain Floris†
Marc Fontoynont
Jacques Lecocq
Eric Loisy (Insight Outside, Event Organizer)
Gaël Obein
Leo Trausnith (CB Office Manager)
Françoise Viénot

Any mention of organisations or products does not imply endorsement by the CIE. Whilst every care has been taken in the compilation of any list, up to the time of going to press, these may not be comprehensive.

© CIE 2013

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without the permission in writing from the CIE Central Bureau at the address below.

Commission Internationale de l’Eclairage
CIE Central Bureau Kegelgasse 27
A-1030 Vienna, AUSTRIA
Tel.: +43 1 714 31 87 0 / Fax: +43 1 714 31 87 18
ciecb@cie.co.at
http://www.cie.co.at
ADDENDUM 1 (2013-06)

PP065: Piccablotto, G., Aghemo, C., Pellegrino, A.
SUBJECTIVE AND OBJECTIVE ASSESSMENT ON LED LIGHTING QUALITY FOR
MUSEUM SHOWCASES

Paper has been added (pp. 1240 – 1249).

PP084: Pellegrino, A., Lo Verso, V.R.M., Cammarano, S., Aghemo C.
A GRAPHICAL TOOL TO PREDICT THE DAYLIGHT AVAILABILITY WITHIN A ROOM
AT THE EARLIEST DESIGN STAGES

Paper has been added (pp. 1250 – 1260).

PP114: Markey, Y., Deswert, J.-M.
IN DEPTH INVENTORY FOR A HIGHER QUALITY OF STREET LIGHTING

Paper has been added (pp. 1261 – 1265).
The following table provides an overview of the Papers and Posters presented at the Conference. The papers are published in the Proceedings in consecutive order of presentation. The authors are responsible for the contents of their papers.

<table>
<thead>
<tr>
<th>Oral Presentations</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keynote & Plenary Session 1:</td>
<td></td>
</tr>
<tr>
<td>History of Lighting and Art</td>
<td></td>
</tr>
<tr>
<td>Chair: Ann Webb, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>KS01</td>
<td>1</td>
</tr>
<tr>
<td>Bastie, J.</td>
<td></td>
</tr>
<tr>
<td>ONE HUNDRED YEARS OF CIE AND EVOLUTION OF LIGHTING</td>
<td></td>
</tr>
<tr>
<td>OP01</td>
<td>10</td>
</tr>
<tr>
<td>Olsson, G.</td>
<td></td>
</tr>
<tr>
<td>ONE AND A HALF MILLENNIUM OF COLOURED LIGHT</td>
<td></td>
</tr>
<tr>
<td>OP02</td>
<td>16</td>
</tr>
<tr>
<td>Ezrati, J.-J.</td>
<td></td>
</tr>
<tr>
<td>BACK ON A HUNDRED YEARS OF TECHNOLOGICAL DEVELOPMENT IN THE SERVICE OF THE MUSEUM LIGHTING</td>
<td></td>
</tr>
<tr>
<td>Plenary Session 2:</td>
<td></td>
</tr>
<tr>
<td>Hot Topics in Outdoor Lighting</td>
<td></td>
</tr>
<tr>
<td>Chair: Ron Gibbons, USA</td>
<td></td>
</tr>
<tr>
<td>OP03</td>
<td>23</td>
</tr>
<tr>
<td>Fotios, S.A., Unwin, J.</td>
<td></td>
</tr>
<tr>
<td>RELATIVE WEIGHTING OF LIGHTING ALONGSIDE OTHER ENVIRONMENTAL FEATURES IN AFFECTING PEDESTRIAN REASSURANCE</td>
<td></td>
</tr>
<tr>
<td>OP04</td>
<td>32</td>
</tr>
<tr>
<td>Romnée, A. et al.</td>
<td></td>
</tr>
<tr>
<td>A NEW REAL TIME INTELLIGENT MANAGEMENT MODEL FOR STREET LIGHTING</td>
<td></td>
</tr>
<tr>
<td>OP05</td>
<td>41</td>
</tr>
<tr>
<td>Heynderickx, I. et al.</td>
<td></td>
</tr>
<tr>
<td>ESTIMATING EYE ADAPTATION FOR TYPICAL LUMINANCE VALUES IN THE FIELD OF VIEW WHILE DRIVING IN URBAN STREETS</td>
<td></td>
</tr>
<tr>
<td>Oral Presentations</td>
<td>Page</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Colour Quality Assessment</td>
<td></td>
</tr>
<tr>
<td>Chair: Ronnier Luo, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>OP06 Bodrogi, P. et al.</td>
<td>48</td>
</tr>
<tr>
<td>SEMANTIC INTERPRETATION OF COLOUR RENDERING INDICES: A COMPARISON OF CRI AND CRI2012</td>
<td></td>
</tr>
<tr>
<td>OP07 Jost, S., Fontoyntont, M.</td>
<td>53</td>
</tr>
<tr>
<td>COLOUR RENDERING OF FACE COMPLEXION AND HAIR UNDER LED SOURCES</td>
<td></td>
</tr>
<tr>
<td>OP08 Imai, Y. et al.</td>
<td>62</td>
</tr>
<tr>
<td>A STUDY OF COLOR RENDERING PROPERTIES BASED ON COLOR PREFERENCE OF OBJECTS IN ADAPTATION TO LED LIGHTING</td>
<td></td>
</tr>
<tr>
<td>OP09 Tsukitani, A.</td>
<td>68</td>
</tr>
<tr>
<td>OPTIMIZATION OF COLOUR QUALITY FOR LANDSCAPE LIGHTING BASED ON FEELING OF CONTRAST INDEX</td>
<td></td>
</tr>
<tr>
<td>OP10 Nagy, B.V. et al.</td>
<td>72</td>
</tr>
<tr>
<td>THE EFFECT OF AMBIENT ILLUMINATION SPECTRUM ON VISUAL PERFORMANCE</td>
<td></td>
</tr>
<tr>
<td>OP11 Decuypere J. et al.</td>
<td>76</td>
</tr>
<tr>
<td>SIMULATION OF THE RETINA RESPONSE TO MESOPIC VISUAL SCENES</td>
<td></td>
</tr>
<tr>
<td>Health and Wellbeing</td>
<td></td>
</tr>
<tr>
<td>Chair: John O’Hagan, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>OP12 Biro, A., Bianchi, C.</td>
<td>82</td>
</tr>
<tr>
<td>LIGHT AS A MOTOR FOR INNOVATION AND WELLBEING</td>
<td></td>
</tr>
<tr>
<td>OP14 Wojtysiak, A., Lang, D.</td>
<td>91</td>
</tr>
<tr>
<td>APPLICATION STUDIES ON NON-VISUAL EFFECTS OF LIGHT WITH TRADITIONAL AND SOLID STATE LIGHT SOURCES</td>
<td></td>
</tr>
<tr>
<td>OP15 Govén, T., Laike, T.</td>
<td>95</td>
</tr>
<tr>
<td>VISUAL AND NON-VISUAL EFFECTS OF DIFFERENT SPECTRAL POWER DISTRIBUTIONS FROM LIGHT SOURCES - LIGHT EMITTING DIODES (LED) VS. 3-PHOSPHORUS FLUORESCENT TUBES</td>
<td></td>
</tr>
<tr>
<td>OP16 Ámundadóttir, M.L. et al.</td>
<td>101</td>
</tr>
<tr>
<td>MODELLING NON-VISUAL RESPONSES TO LIGHT: UNIFYING SPECTRAL AND TEMPORAL CHARACTERISTICS IN A SINGLE MODEL STRUCTURE</td>
<td></td>
</tr>
<tr>
<td>OP17 Boulenguez, P. et al.</td>
<td>111</td>
</tr>
<tr>
<td>BLUE LIGHT HAZARD OF LEDS – COMPARISON OF THE PHOTOBIOLOGICAL RISK GROUPS OF FIFTEEN LAMPS ASSESSED USING THE UNIFORM SPECTRUM ASSUMPTION AND A NEW HYPERSPECTRAL IMAGING METHOD</td>
<td></td>
</tr>
</tbody>
</table>
Oral Presentations

Workplace Lighting Concepts

<table>
<thead>
<tr>
<th>Oral Presentation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>OP18 Ayama, M. et al. DISCOMFORT GLARE OF WHITE LED SOURCES OF DIFFERENT SPATIAL ARRANGEMENTS</td>
<td>119</td>
</tr>
<tr>
<td>OP19 Villa, C., Labazrade, R. SUITABLE LUMINOUS ENVIRONMENT FOR VARIOUS ACTIVITIES IN SHARED OFFICE</td>
<td>123</td>
</tr>
<tr>
<td>OP20 Inoue, Y., Maruyama, H. STUDY ON ILLUMINANCE BALANCE BETWEEN WORKING AREA AND AMBIENT - EFFECTS OF THE DISTRIBUTION OF LUMINOUS INTENSITY OF AMBIENT LIGHTING AND THE ORDER AND SPEED OF ADJUSTMENT</td>
<td>133</td>
</tr>
<tr>
<td>OP21 Suzuki, N. et al. A STUDY ON THE PERMISSIBLE RANGE OF NON-UNIFORMITY BY AMBIENT LIGHTING IN A WORKPLACE</td>
<td>142</td>
</tr>
<tr>
<td>OP22 Kronqvist, A. REVIEW OF OFFICE LIGHTING RESEARCH</td>
<td>148</td>
</tr>
<tr>
<td>OP23 Logadóttir, A. et al. COMPARISON OF USER SATISFACTION WITH FOUR DIFFERENT LIGHTING CONCEPTS</td>
<td>159</td>
</tr>
</tbody>
</table>

Plenary Session 3: Hot topics in Interior Lighting

<table>
<thead>
<tr>
<th>Oral Presentation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>OP24 Veitch, J.A. et al. WHAT WE KNOW ABOUT WINDOWS AND WELL-BEING, AND WHAT WE NEED TO KNOW</td>
<td>169</td>
</tr>
<tr>
<td>OP25 Mardaljevic, J., Christoffersen, J. A ROADMAP FOR UPGRADING NATIONAL/EU STANDARDS FOR DAYLIGHT IN BUILDINGS</td>
<td>178</td>
</tr>
<tr>
<td>OP26 Poplawski, M.E., Miller, N.M. FLICKER IN SOLID-STATE LIGHTING: MEASUREMENT TECHNIQUES, AND PROPOSED REPORTING AND APPLICATION CRITERIA</td>
<td>188</td>
</tr>
<tr>
<td>OP27 Porritt, J. et al. THE REBOUND EFFECT - AN OVERVIEW OF THE IMPLICATIONS FOR LIGHTING ENERGY</td>
<td>203</td>
</tr>
</tbody>
</table>
Oral Presentations

Advanced Correction Methods for Spectroradiometry and Goniophotometry
Chair: Peter Blattner, Switzerland

| OP29 | Heidel, G., Marchl, W.
| PRACTICAL EXPERIENCES WITH STRAY LIGHT CORRECTION ON ARRAY SPECTROMETERS FOR LED-PRODUCTION |
| 211 |

| OP30 | Wang, J., Qiao, B., Luo, Y.
| STRAY LIGHT CORRECTION IN GONIOPHOTOMETRY MEASUREMENT |
| 223 |

| OP31 | Chen, C. et al.
| DETERMINATION OF SCANNING RESOLUTION BASED ON NYQUIST SAMPLING THEOREM IN GONIOSPECTRORADIOMETRY |
| 227 |

Lighting the City - Applications and economics
Chair: Yandan Lin, China

| OP32 | Putteman, K. et al.
| INTELLIGENT STREET LIGHTING AND LEDS: BUSINESS CASE AND RETURN ON EXPERIENCE |
| 231 |

| OP33 | Fotios S. et al.
| CRITICAL PEDESTRIAN TASKS: USING EYE-TRACKING WITHIN A DUAL TASK PARADIGM |
| 234 |

| OP35 | Saraiji, R., Oommen, M.S.
| PEDESTRIAN CONTRAST PROFILE |
| 241 |

Integrating Daylight and Electric Lighting
Chair: Dominique Dumortier, France

| OP36 | Sarey Khanie, M. et al.
| INVESTIGATION OF GAZE PATTERNS IN DAYLIT WORKPLACES: USING EYE-TRACKING METHODS TO OBJECTIFY VIEW DIRECTION AS A FUNCTION OF LIGHTING CONDITIONS |
| 250 |

| OP37 | Kelly, R. et al.
| CAPTURING THE USER EXPERIENCE OF ELECTROCHROMIC GLAZING IN AN OPEN PLAN OFFICE |
| 260 |

| OP38 | Fernandes, J.T. et al.
| LIGHTING AND DAYLIGHTING QUALITY: CRITICAL REVIEW OF CRITERIA AND RECOMMENDATIONS AND ITS INSERTION IN BRAZILIAN CONTEXT |
| 267 |

| OP39 | Nakamura, Y., Fujita, N.
| JUST SUFFICIENT LIGHTING CONDITION UNDER HYBRID-LIGHTING OF REAL DAYLIGHT AND ARTIFICIAL LIGHT |
| 276 |
Oral Presentations

LED Photometry and Performance of Photometers
Chair: Armin Sperling, Germany

<table>
<thead>
<tr>
<th>Oral Presentation</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
</table>
| OP40 | Dubnicka R. et al.
ANALYSIS OF PERFORMANCE PARAMETERS OF ILLUMINANCE METERS PER CIE DS 023 QUALITY INDICES FOR SPECIFIC FIELD MEASUREMENTS | 282 |
| OP41 | Martinsons, C. et al.
INFLUENCE OF CURRENT AND VOLTAGE HARMONIC DISTORTION ON THE POWER MEASUREMENT OF LED LAMPS AND LUMINAIRES | 290 |
| OP42 | Krüger, U., Blattner, P.
SPECTRAL MISMATCH CORRECTION FACTOR ESTIMATION FOR WHITE LED SPECTRA BASED ON THE PHOTOMETER’S f1’ VALUE | 300 |
| OP43 | Vaskuri, A. et al.
RADIOMETRIC DETERMINATION OF THE JUNCTION TEMPERATURE OF LIGHT-EMITTING DIODES | 308 |

Lighting the City - Luminaires and Design
Chair: Peter Schwarcz, Hungary

<table>
<thead>
<tr>
<th>Oral Presentation</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
</table>
| OP44 | Gasparovsky D., Raditschova, J.
LIGHTING PROPERTIES AND EFFICIENCY OF LUMINAIRES EXCEEDING THEIR LIFETIME | 317 |
| OP45 | Akashi, Y. et al.
VISUAL MECHANISMS OF DISCOMFORT GLARE SENSATION CAUSED BY LEDS | 327 |
| OP46 | Zhu, X. et al.
THE LUMINAIRE BEAM-SHAPE INFLUENCE ON DISCOMFORT GLARE FOR LED ROAD LIGHTING | 331 |
| OP47 | Niedling, M. et al.
INFLUENCE OF A GLARE SOURCES SPECTRUM ON DISCOMFORT AND DISABILITY GLARE UNDER MESOPIC CONDITIONS | 340 |

Concepts in Lighting Quality
Chair: Anna Pellegrino, Italy

<table>
<thead>
<tr>
<th>Oral Presentation</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
</table>
| OP48 | Labayrade, R., Avouac, P.
VISUAL QUALITY ASSESSMENT OF LED SPOTS IN COMPARISON TO LOW-VOLT AGE HALOGEN SPOTS | 348 |
| OP49 | Chen, J.R. et al.
ASSESSING COLOR HARMONY IN A ROOM USING LED LIGHTINGS | 356 |
| OP50 | Pagot, C. et al.
EVALUATION OF INDOOR LIGHTING SITUATIONS IN PUBLIC ACCESS BUILDINGS AND OUTDOOR SITUATIONS AT NIGHT BY VISUALLY IMPAIRED PEOPLE | 365 |
<table>
<thead>
<tr>
<th>Oral Presentations</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>OP51
Yoshizawa, N. et al.
A STUDY ON THE APPEARANCE OF PAINTINGS IN THE MUSEUM UNDER VIOLET AND BLUE LED</td>
<td>374</td>
</tr>
<tr>
<td>Brightness and Colour, Individual or Shared Percepts</td>
<td>Chair: Miyoshi Ayama, Japan</td>
</tr>
<tr>
<td>OP52
Sarkar, A., Blondé, L.
COLOURIMETRIC OBSERVER CATEGORIES AND THEIR APPLICATIONS IN COLOUR AND VISION SCIENCES</td>
<td>382</td>
</tr>
<tr>
<td>OP53
Vidovszky-Nemeth, A., Schanda, J.
INDIVIDUAL CHANGES OF BRIGHTNESS PERCEPTION</td>
<td>393</td>
</tr>
<tr>
<td>OP54
Kozaki, M. et al.
A PROPOSAL OF PREDICTIVE EQUATION FOR “SPATIAL BRIGHTNESS” CONSIDERING THE EFFECT OF LOOKING AROUND AND ITS APPLICATION TO REAL PROJECT</td>
<td>402</td>
</tr>
<tr>
<td>Lighting the City - Spaces</td>
<td>Chair: Dionyz Gasparovsky, Slovakia</td>
</tr>
<tr>
<td>OP55
Bülow, K.H.
LIGHT RHYTHMS IN ARCHITECTURE INTEGRATION OF RHYTHMIC URBAN LIGHTING INTO ARCHITECTURAL CONCEPTS</td>
<td>410</td>
</tr>
<tr>
<td>OP56
Bezerra, R., Simões Z.
REINVENTING URBAN SPACES THROUGH LIGHT AND COLOUR: CACILHAS PROJECT</td>
<td>418</td>
</tr>
<tr>
<td>OP57
Conniasselle, T. et al.
IMPRESSION OF LIGHT AND FEELING OF SECURITY IN THE CITY - EXPERIMENTING MESOPIC VISION</td>
<td>425</td>
</tr>
<tr>
<td>Well-being, Glare and Comfort</td>
<td>Chair: Alessandro Rizzi, Italy</td>
</tr>
<tr>
<td>OP58
Hsu, S.-W. et al.
RELATIONS BETWEEN FLICKER, GLARE, AND PERCEPTUAL RATINGS OF LED BILLBOARDS UNDER VARIOUS CONDITIONS</td>
<td>428</td>
</tr>
<tr>
<td>OP59
Hsieh, P.H. et al.
FLICKER AND VISUAL COMFORT EVALUATIONS OF LED PANEL DISPLAY</td>
<td>435</td>
</tr>
<tr>
<td>OP60
Lai, P.-Y. et al.
INVESTIGATION OF DISCOMFORT GLARE OF RGB LED BILLBOARD AT NIGHT</td>
<td>442</td>
</tr>
<tr>
<td>Poster Presentations</td>
<td>Page</td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
</tr>
<tr>
<td>D1 - Vision and Colour / Colorimetry</td>
<td></td>
</tr>
<tr>
<td>PP001 Price, L.L.A.</td>
<td>452</td>
</tr>
<tr>
<td>INFORMATION ENTROPY AND THE COLORIMETRY OF SPECTRA</td>
<td></td>
</tr>
<tr>
<td>PP002 Polster, S., Schierz, C.</td>
<td>456</td>
</tr>
<tr>
<td>TOWARDS A FIELD SIZE INDEPENDENT METAMERISM</td>
<td></td>
</tr>
<tr>
<td>PP003 Melgosa, M. et al.</td>
<td>465</td>
</tr>
<tr>
<td>TESTING A COLOUR-DIFFERENCE FORMULA FOR THE AUTOMOTIVE INDUSTRY USING THE EXPERIMENTAL VISUAL DATASETS Employed in CIEDE2000 DEVELOPMENT</td>
<td></td>
</tr>
<tr>
<td>PP004 Kobayashi, S. et al.</td>
<td>470</td>
</tr>
<tr>
<td>COLOUR RENDERING EVALUATION OF THE LED LIGHT SOURCE BY THE RELATIVE EVALUATION</td>
<td></td>
</tr>
<tr>
<td>PP005 Nakajima, Y., Fuchida, T.</td>
<td>479</td>
</tr>
<tr>
<td>AFFECTIVE EVALUATION ON COLOR SAMPLES ILLUMINATED BY LED ILLUMINATION–INFLUENCE OF ILLUMINANCE LEVEL</td>
<td></td>
</tr>
<tr>
<td>PP006 da Pos, O. et al.</td>
<td>488</td>
</tr>
<tr>
<td>SUBJECTIVE ASSESSMENT OF UNIQUE COLOURS AS A TOOL TO EVALUATE COLOUR DIFFERENCES IN DIFFERENT ADAPTATION CONDITIONS</td>
<td></td>
</tr>
<tr>
<td>PP008 Markvart, J. et al.</td>
<td>496</td>
</tr>
<tr>
<td>USER EVALUATION OF EIGHT LED LIGHT SOURCES WITH DIFFERENT SPECIAL COLOUR RENDERING INDICES R9</td>
<td></td>
</tr>
<tr>
<td>PP009 Itoh, N., Sagawa, K.</td>
<td>506</td>
</tr>
<tr>
<td>SPANS OF FUNDAMENTAL COLOURS OF PEOPLE WITH COLOR VISION DEFECTS</td>
<td></td>
</tr>
<tr>
<td>PP010 Hertog, W. et al.</td>
<td>510</td>
</tr>
<tr>
<td>THE CHROMATICITY OF WHITE LIGHT</td>
<td></td>
</tr>
<tr>
<td>PP011 Huang, T.-W. et al.</td>
<td>516</td>
</tr>
<tr>
<td>AN INTELLIGENT COLOUR TEMPERATURE CONVERSION FUNCTION WITH MULTI-PRIMARY COLOURS FOR INDOOR SOLID-STATE LIGHTING</td>
<td></td>
</tr>
<tr>
<td>PP012 Perales, E. et al.</td>
<td>523</td>
</tr>
<tr>
<td>INFLUENCE OF SPECTRAL POWER DISTRIBUTION OF LIGHT SOURCES ON THE COLOUR APPEARANCE OF GONIOCHROMATIC COLOURS</td>
<td></td>
</tr>
<tr>
<td>D1 - Vision and Colour / Mesopic Vision</td>
<td></td>
</tr>
<tr>
<td>PP013 Uchida, T., Ohno, Y.</td>
<td>529</td>
</tr>
<tr>
<td>EFFECT OF HIGH LUMINANCE SOURCES TO PERIPHERAL ADAPTATION STATE IN MESOPIC RANGE</td>
<td></td>
</tr>
</tbody>
</table>
Poster Presentations

<table>
<thead>
<tr>
<th>D1 - Vision and Colour / Miscellaneous</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP014 Yao, H., Li, X., Chen, J.</td>
<td>537</td>
</tr>
<tr>
<td>PUTTING MULTI-SHADOW INTO NUMBERS</td>
<td></td>
</tr>
<tr>
<td>PP016 Liedtke, C. et al.</td>
<td>542</td>
</tr>
<tr>
<td>THE LIGHT DIRECTION AND DIRECTIONAL LIGHT—TOWARDS A NEW QUANTIFICATION OF AN ESSENTIAL LIGHTING QUALITY CRITERION</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D2 - Measurement / Measurement of Material</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP018 Matusiak, B.</td>
<td>552</td>
</tr>
<tr>
<td>LIGHT DIFFUSING POWER OF TRANSLUCENT GLAZING</td>
<td></td>
</tr>
<tr>
<td>PP020 Deneyer A. et al.</td>
<td>560</td>
</tr>
<tr>
<td>BI-DIRECTIONAL SCATTERING DISTRIBUTION DATA OF SOLAR SHADING: CHARACTERIZATION AND PERFORMANCES</td>
<td></td>
</tr>
<tr>
<td>PP021 Li, W. et al.</td>
<td>568</td>
</tr>
<tr>
<td>Measurement of typical road surface reflectance in china</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D2 - Measurement / Measurement of LEDs</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP026 Tarbeyevskaya, A. et al.</td>
<td>575</td>
</tr>
<tr>
<td>OPTIMAL THERMAL MANAGEMENT OF LED LIGHTING SYSTEMS REGARDING EFFICIENCY AND COSTS</td>
<td></td>
</tr>
<tr>
<td>PP028 Bensel, S., Völker, S.</td>
<td>585</td>
</tr>
<tr>
<td>SPATIAL COLOUR DISTRIBUTION OF WHITE LED LUMINAIRES</td>
<td></td>
</tr>
<tr>
<td>PP029 Govorov, F. P. et al.</td>
<td>591</td>
</tr>
<tr>
<td>EVALUATION OF LED SOURCE DEGRADATION</td>
<td></td>
</tr>
<tr>
<td>PP030 Bartsev, A.A. et al.</td>
<td>595</td>
</tr>
<tr>
<td>THE FEATURES OF THE TESTING PROGRAM FOR LED-LUMINAIRES AT VNISI TESTING CENTRE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D2 - Measurement / Measurement Systems</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP032 Shpak, M. et al.</td>
<td>601</td>
</tr>
<tr>
<td>CHARACTERIZED PHOTOPIC-SCOTOPIC LUMINANCE METER FOR MEASUREMENTS IN THE MESOPIC RANGE</td>
<td></td>
</tr>
<tr>
<td>PP033 Porrovecchio, G. et al.</td>
<td>605</td>
</tr>
<tr>
<td>LOW NOISE DETECTION SYSTEM FOR MESOPIC AND SCOTOPIC PHOTOMETRY</td>
<td></td>
</tr>
<tr>
<td>PP035 Poikonen, T. et al.</td>
<td>607</td>
</tr>
<tr>
<td>EFFECT OF ROTATION AXIS ON THE VALUE OF PHOTOMETER DIRECTIONAL RESPONSE INDEX F2</td>
<td></td>
</tr>
</tbody>
</table>
Poster Presentations

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP036
Dubnicka R. et al.
USING OF CCD BASED FIBRE OPTIC SPECTRORADIOMETERS IN PHOTOMETRIC MEASUREMENTS UNDER DIFFERENT CONDITIONS</td>
<td>611</td>
</tr>
<tr>
<td>PP037
Li, S. et al.
AN IMPROVED CCT-TLF CALIBRATION METHOD FOR SPHERESPECTRORADIOMETERS</td>
<td>617</td>
</tr>
<tr>
<td>PP038
Calore, E. et al.
TEST OF AN OPEN HARDWARE COLORIMETER</td>
<td>620</td>
</tr>
<tr>
<td>PP039
Yamada, T., Kohko, S.
GLARE EVALUATION SYSTEM USING IMAGING PHOTOMETRY</td>
<td>627</td>
</tr>
<tr>
<td>PP040
Zhao, W. et al.
COMPARISON ON TOTAL LUMINOUS FLUX MEASUREMENT OF SPECTROGONIOPHOTOMETER AND GONIOPHOTOMETER</td>
<td>634</td>
</tr>
<tr>
<td>D2 - Measurement / Miscellaneous

PP042
Costa, C.L.M. et al.
LIGHTING QUALITY AND CHARACTERIZATION OF LAMPS AND LUMINAIRES: BRAZIL GETS READY FOR THE ADVANCEMENT OF SOLID STATE ILLUMINATION</td>
<td>637</td>
</tr>
<tr>
<td>PP043
Coelho, C.T., Alves, L.C.
REALIZATION OF THE CANDELA AT INMETRO</td>
<td>643</td>
</tr>
<tr>
<td>D3 - Interior Lighting / Glare

PP044
Higashi, H. et al.
THE DEVELOPMENT OF EVALUATION FOR DISCOMFORT GLARE IN LED LIGHTING OF INDOOR WORK PLACE: THE EFFECT OF THE LUMINANCE DISTRIBUTION OF LUMINOUS PARTS ON SUBJECTIVE EVALUATION</td>
<td>648</td>
</tr>
<tr>
<td>PP045
Koga, S. et al.
THE DEVELOPMENT OF EVALUATION FOR DISCOMFORT GLARE IN LED LIGHTING OF INDOOR WORK PLACE: THE MODIFICATION OF G-CLASSIFICATION USING LUMINANCE DISTRIBUTION OF LUMINOUS PARTS</td>
<td>657</td>
</tr>
<tr>
<td>PP046
Chao, W.C. et al.
A STUDY ON DEVELOPING VEILING GLARE RATING ACCORDING TO CHARACTERISTICS OF REFLECTED IMAGES ON SCREENS AND HUMAN RESPONSES</td>
<td>663</td>
</tr>
<tr>
<td>PP048
Peng, S. et al.
VISUAL COMFORT LIGHTING FOR COMPUTER USE AT HOME</td>
<td>668</td>
</tr>
<tr>
<td>PP049
Barbato, G. et al.
SUBJECTIVE RESPONSES TO DIFFERENT LIGHT SOURCES. A STUDY ON LIGHT PREFERENCES AND COMPARISON OF STANDARD LIGHT MEASURES WITH HUMAN INDIVIDUAL ESTIMATES</td>
<td>673</td>
</tr>
</tbody>
</table>
Poster Presentations

D3 - Interior Lighting / Homes

PP050	Haj Hussein, M., Semidor, C.	AN INVESTIGATION INTO LUMINOUS COMFORT IN THE SUMMER SEASON OF PALESTINIAN DWELLINGS: INHABITANTS’ POINT OF VIEW	679
PP051	Khan, A.A., Semidor, C.	VIRTUAL STUDY OF THE DAY-LIGHTING PERFORMANCE OF RAWSHAN IN RESIDENTIAL BUILDINGS OF JEDDAH	689
PP053	Gok-Sook, L., Ji-Eun, S.	A STUDY ON THE PERCEPTION CHANGE OF FINISHING MATERIAL BY LIGHTING IN RESIDENTIAL SPACE	697
PP054	Csuti, P. et al.	PREFERRED HOME LIGHTING DESIGN	705
PP055	Kim, H.-J. et al.	AN EXPERIMENTAL STUDY ON THE LIGHTING ENVIRONMENT FOR RESIDENT ACTIVITIES IN LIVINGROOMS	711

D3 - Interior Lighting / LEDs

PP056	Pawlak, A., Zaremba, K.	INFLUENCE OF TECHNICAL PARAMETERS OF LED INDIRECT LIGHTING INSTALLATIONS ON ILLUMINATION PARAMETERS	720
PP058	Chen, Y. et al.	COMPARISON BETWEEN FLUORESCENT AND LED LIGHTING ON VISIBILITY AND VISUAL COMFORT IN SCHOOL CLASSROOMS	727
PP059	Dangol, R. et al.	SUBJECTIVE PREFERENCES FOR LED LIGHTING IN OFFICES	733
PP060	Elhaddad A.I.M. et al.	USER PREFERENCES IN INDOOR LED LIGHTING	742
PP061	Le Rohellec, J. et al.	A STUDY OF THE SUSTAINED PUPIL RESPONSE UNDER A VARIETY OF LED ILLUMINATIONS	752

D3 - Interior Lighting / Museums

<p>| PP062 | Mou, X., Berns R. | DESIGN OF LED FOR MUSEUM LIGHTING APPLICATION | 758 |
| PP063 | Szabó, F. et al. | LIGHT EMITTING DIODES IN MUSEUM LIGHTING – COLOUR QUALITY REQUIREMENTS FOR VISITORS’ ACCEPTANCE | 767 |</p>
<table>
<thead>
<tr>
<th>Poster Presentations</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP066 Lanyi, C.S. et al.</td>
<td>772</td>
</tr>
<tr>
<td>MUSEUM OBJECTS ON THE INTERNET, IN PRINT AND IN REALITY</td>
<td></td>
</tr>
<tr>
<td>PP067 Thorseth, A. et al.</td>
<td>777</td>
</tr>
<tr>
<td>DYNAMIC MINIATURE LIGHTING SYSTEM WITH LOW CORRELATED COLOUR TEMPERATURE AND HIGH COLOUR RENDERING INDEX FOR MUSEUM LIGHTING OF FRAGILE ARTEFACTS</td>
<td></td>
</tr>
<tr>
<td>D3 - Interior Lighting / Daylight</td>
<td></td>
</tr>
<tr>
<td>PP069 Tralau, B. et al.</td>
<td>783</td>
</tr>
<tr>
<td>THE EFFECT OF COLOUR TEMPERATURE TO HUMANS DEPENDING ON TIME OF DAY, DAYLIGHT AND WEATHER</td>
<td></td>
</tr>
<tr>
<td>PP070 Ho, J.C.K. et al.</td>
<td>787</td>
</tr>
<tr>
<td>SIMULATION OF ANNUAL DAYLIGHT PERFORMANCE UNDER HONG KONG REPRESENTATIVE SKIES FOR USINE LIGHTING ENERGY INTELLIGENTLY</td>
<td></td>
</tr>
<tr>
<td>PP071 Koga, Y., Miki, Y.</td>
<td>793</td>
</tr>
<tr>
<td>A REVIEW OF HISTORICAL CHANGES IN JAPANESE REGULATIONS AND STANDARDS FOR SUNLIGHT AND DAYLIGHTING</td>
<td></td>
</tr>
<tr>
<td>PP072 Deroisy B., Deneyer A.</td>
<td>801</td>
</tr>
<tr>
<td>DAYLIGHT AND SOLAR ACCESS AT URBAN SCALE: A METHODOLOGY AND ITS APPLICATION TO A HIGH DENSITY DEVELOPMENT IN BRUSSELS</td>
<td></td>
</tr>
<tr>
<td>PP073 Filetóth, L.I.</td>
<td>809</td>
</tr>
<tr>
<td>DAYLIGHTING DESIGN TOOL FOR ARCHITECTS</td>
<td></td>
</tr>
<tr>
<td>PP074 Souza, D.F. et al.</td>
<td>817</td>
</tr>
<tr>
<td>SKY CLASSIFICATION METRICS FOR HIGH DYNAMIC RANGE IMAGES</td>
<td></td>
</tr>
<tr>
<td>PP075 Kato, M. et al.</td>
<td>826</td>
</tr>
<tr>
<td>RESEARCH ON PREFERABLE LUMINANCE CONTRAST OF WINDOW AND WALL AT DAYTIME</td>
<td></td>
</tr>
<tr>
<td>PP076 Fontoymont, M. et al.</td>
<td>831</td>
</tr>
<tr>
<td>PROPOSAL OF SIMPLE DAYLIGHTING PERFORMANCE INDICES FOR REGULATIONS: VALIDATION WITH ON-SITE MEASUREMENT CAMPAIGN</td>
<td></td>
</tr>
<tr>
<td>PP077 Aizenberg, J.B.</td>
<td>838</td>
</tr>
<tr>
<td>HOLLOW LIGHT GUIDES: 50 YEARS OF RESEARCH, DEVELOPMENT, MANUFACTURE AND APPLICATION - A RETROSPECTIVE AND LOOKING TO THE FUTURE</td>
<td></td>
</tr>
<tr>
<td>PP079 Tsikaloudaki, K. et al.</td>
<td>844</td>
</tr>
<tr>
<td>ASSESSMENT OF DAYLIGHT CONDITIONS IN OFFICE BUILDINGS WITH THE INTEGRATION OF EXTERNAL BLINDS</td>
<td></td>
</tr>
</tbody>
</table>
Poster Presentations

<table>
<thead>
<tr>
<th>Poster Page</th>
<th>Title and Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP083</td>
<td>PP083 Liu, Y., Mou, T. EVALUATION OF WINDOW LIGHTING CONSIDERING THE CIRCADIAN EFFECT</td>
</tr>
<tr>
<td>PP085</td>
<td>PP085 Kojima, Y. et al. DEVELOPMENT OF AUTOMATIC LIGHTING CONTROL SYSTEM USING BRIGHTNESS IMAGE</td>
</tr>
<tr>
<td>PP086</td>
<td>PP086 Higuera, J.E. et al. Energy harvesting sources for intelligent LED lighting systems</td>
</tr>
<tr>
<td>PP087</td>
<td>PP087 Mochizuki, E. et al. EFFECTS ON ENERGY SAVINGS OF PERSONAL LIGHTING CONTROL SYSTEM IN AN OFFICE BUILDING IN JAPAN - PART 1 OUTLINE OF THE MEASUREMENT AND EFFECTS ON LOWERING ELECTRICAL POWER CONSUMPTION FOR LIGHTING</td>
</tr>
<tr>
<td>PP088</td>
<td>PP088 Oikawa, D. et al. EFFECTS ON ENERGY SAVINGS OF PERSONAL LIGHTING CONTROL SYSTEM IN AN OFFICE BUILDING IN JAPAN - PART 2 EVALUATION OF LIGHTING ENVIRONMENT AND OCCUPANTS’ RESPONSE TO PERSONAL LIGHTING CONTROL SYSTEM</td>
</tr>
<tr>
<td>PP090</td>
<td>PP090 Chun, S.Y. et al. SMART LIGHTING CONTROL USING HUMAN MOTION TRACKING FROM DEPTH CAMERAS</td>
</tr>
<tr>
<td>PP091</td>
<td>PP091 Kirsch, R., Völker, S. LIGHTING QUALITY Versus ENERGY EFFICIENCY</td>
</tr>
<tr>
<td>PP093</td>
<td>PP093 Cho, S.-H., Kim, H. DEVELOPMENT OF THE METHOD TO BE ECONOMIC EVALUATION OF A LIGHTING SYSTEM</td>
</tr>
<tr>
<td>PP094</td>
<td>PP094 Miki, Y. THE REQUIREMENTS FOR THE LIGHTING ENERGY PERFORMANCE ASSESSMENT OF NON-RESIDENTIAL AND RESIDENTIAL BUILDINGS CONSIDERING ASSUMPTION OF BUILDING USAGE CONDITIONS</td>
</tr>
<tr>
<td>PP095</td>
<td>PP095 Mucklejohn, S.A. et al. UNRAVELLING EFFICACY, MAINTENANCE AND LIGHTING ENERGY FOR THE END USER</td>
</tr>
<tr>
<td>PP097</td>
<td>PP097 Novák, T. et al. SOFTWARE CALCULATION TOOL FOR LIGHT SAVINGS IN THE BUILDINGS</td>
</tr>
<tr>
<td>Poster Presentations</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>D3 - Interior Lighting / Lighting Design</td>
<td></td>
</tr>
<tr>
<td>PP098 Säter, M.</td>
<td>934</td>
</tr>
<tr>
<td>LIGHTING DESIGN BASED ON HUMAN PRINCIPLES</td>
<td></td>
</tr>
<tr>
<td>PP102 Dubnicka R.,</td>
<td>941</td>
</tr>
<tr>
<td>RELATION BETWEEN THE GRID FOR CALCULATION/MEASUREMENT</td>
<td></td>
</tr>
<tr>
<td>AND RESULTING LUMINOUS PARAMETERS FOR ILLUMINATION OF</td>
<td></td>
</tr>
<tr>
<td>INDOOR WORKPLACES</td>
<td></td>
</tr>
<tr>
<td>PP103 Garcia-Hansen, V., et al.</td>
<td>951</td>
</tr>
<tr>
<td>TESTING THE ACCURACY OF LUMINANCE MAPS ACQUIRED BY</td>
<td></td>
</tr>
<tr>
<td>SMART PHONE CAMERAS</td>
<td></td>
</tr>
<tr>
<td>PP104 Filetóth, L.I.</td>
<td>956</td>
</tr>
<tr>
<td>GLOBAL ILLUMINATION ALGORITHM USED IN COMPUTER AIDED</td>
<td></td>
</tr>
<tr>
<td>ARCHITECTURAL DESIGN PRESENTATION</td>
<td></td>
</tr>
<tr>
<td>PP105 Németh, Z., et al.</td>
<td>962</td>
</tr>
<tr>
<td>HOW TO CHOOSE SIMULATION PARAMETERS TO IMPROVE</td>
<td></td>
</tr>
<tr>
<td>ACCURACY?</td>
<td></td>
</tr>
<tr>
<td>D4 - Lighting and Signalling for Transport / LEDs</td>
<td></td>
</tr>
<tr>
<td>PP106 Saito, T., Akashi Y.</td>
<td>966</td>
</tr>
<tr>
<td>FIELD EXPERIMENTS OF STREET LIGHTING USING HIGH S/P</td>
<td></td>
</tr>
<tr>
<td>RATIO LEDS</td>
<td></td>
</tr>
<tr>
<td>PP107 Hirakawa, S., et al.</td>
<td>971</td>
</tr>
<tr>
<td>STUDIES ON TUNNEL LIGHTING VISIBILITY AND ENERGY-SAVING</td>
<td></td>
</tr>
<tr>
<td>EFFECT IN HIGH-OVERALL-UNIFORMITY (APPLICATION OF LED</td>
<td></td>
</tr>
<tr>
<td>IN TUNNEL LIGHTING</td>
<td></td>
</tr>
<tr>
<td>PP108 Lee, M.W., Kim, H.</td>
<td>976</td>
</tr>
<tr>
<td>A SET OF QUALITY CRITERIA FOR SELECTION AND INSTALLATION</td>
<td></td>
</tr>
<tr>
<td>OF LED ROAD LIGHTING</td>
<td></td>
</tr>
<tr>
<td>PP109 Fontoyont, M. et al.</td>
<td>983</td>
</tr>
<tr>
<td>PERCEPTION OF HUMAN SKIN IN STREET LIGHTING UNDER FIVE</td>
<td></td>
</tr>
<tr>
<td>TYPES OF LED SPECTRA</td>
<td></td>
</tr>
<tr>
<td>**D4 - Lighting and Signalling for Transport / Road</td>
<td></td>
</tr>
<tr>
<td>Lighting**</td>
<td></td>
</tr>
<tr>
<td>PP110 Fotios, S., Yang, B.</td>
<td>990</td>
</tr>
<tr>
<td>MEASURING THE IMPACT OF LIGHTING ON INTERPERSONAL</td>
<td></td>
</tr>
<tr>
<td>JUDGEMENTS OF PEDESTRIANS AT NIGHT-TIME</td>
<td></td>
</tr>
<tr>
<td>PP113 Gasparovsky, D.</td>
<td>999</td>
</tr>
<tr>
<td>CALCULATION OF THE OPERATION TIME OF ROAD LIGHTING</td>
<td></td>
</tr>
<tr>
<td>PP115 Jägerbrand, A.K., Robertson, K.</td>
<td>1009</td>
</tr>
<tr>
<td>Poster Presentations</td>
<td>Page</td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
</tr>
<tr>
<td>PP117</td>
<td></td>
</tr>
<tr>
<td>Wang, L., Zhang, M.</td>
<td></td>
</tr>
<tr>
<td>RESEARCH ON TESTING METHODS OF RELATIVE PARAMETERS OF OVER-PASS LIGHTING SAFETY BY HDR IMAGE</td>
<td>1017</td>
</tr>
<tr>
<td>PP118</td>
<td></td>
</tr>
<tr>
<td>Lee, M.W. et al.</td>
<td></td>
</tr>
<tr>
<td>A STUDY ON THE LIMIT OF LIGHTING POWER DENSITY FOR ROAD LIGHTING</td>
<td>1021</td>
</tr>
<tr>
<td>PP119</td>
<td></td>
</tr>
<tr>
<td>Schade, S., Völker, S.</td>
<td></td>
</tr>
<tr>
<td>OPTIMISING VISIBILITY IN STREET LIGHTING BY OPTIMISING AND COMPARING LUMINOUS INTENSITY DISTRIBUTIONS</td>
<td>1028</td>
</tr>
<tr>
<td>PP120</td>
<td></td>
</tr>
<tr>
<td>Pracki, P., Jägerbrand, A.K.</td>
<td></td>
</tr>
<tr>
<td>APPLICATION OF ROAD LIGHTING ENERGY EFFICIENCY EVALUATION SYSTEM IN PRACTICE</td>
<td>1038</td>
</tr>
<tr>
<td>PP123</td>
<td></td>
</tr>
<tr>
<td>Saraiji, R. et al</td>
<td></td>
</tr>
<tr>
<td>THE EFFECT OF ONCOMING CAR HEADLIGHTS ON PEDESTRIAN VISIBILITY</td>
<td>1044</td>
</tr>
<tr>
<td>D4 - Lighting and Signalling for Transport / Road Surface / Objects</td>
<td></td>
</tr>
<tr>
<td>PP126</td>
<td></td>
</tr>
<tr>
<td>Akizuki, Y., Okuda, S.</td>
<td></td>
</tr>
<tr>
<td>RELATIONSHIP BETWEEN LUMINANCE DISTRIBUTIONS OF ROAD SURFACE AND VISIBILITY IN STREET LIGHTING DESIGN</td>
<td>1051</td>
</tr>
<tr>
<td>PP127</td>
<td></td>
</tr>
<tr>
<td>Lecocq, J. et al.</td>
<td></td>
</tr>
<tr>
<td>LUMIROUTE: OPTIMISATION OF ROAD SURFACES REFLECTION PROPERTIES AND LIGHTING</td>
<td>1062</td>
</tr>
<tr>
<td>PP128</td>
<td></td>
</tr>
<tr>
<td>Hagio, T. et al.</td>
<td></td>
</tr>
<tr>
<td>THE STUDY OF REFLECTANCE FACTOR'S DISTRIBUTION OF FALLEN OBJECTS AND THE INFLUENCE ON VISIBILITY</td>
<td>1070</td>
</tr>
<tr>
<td>PP129</td>
<td></td>
</tr>
<tr>
<td>Korobko, A.A.</td>
<td></td>
</tr>
<tr>
<td>APPROXIMATION OF ROAD SURFACE LUMINANCE COEFFICIENT</td>
<td>1076</td>
</tr>
<tr>
<td>D4 - Lighting and Signalling for Transport / Tunnel Lighting</td>
<td></td>
</tr>
<tr>
<td>PP131</td>
<td></td>
</tr>
<tr>
<td>Ito, H. et al.</td>
<td></td>
</tr>
<tr>
<td>VISIBILITY OF THE CRITICAL OBJECT AND ENERGY EFFICIENCY OF PRO-BEAM LIGHTING FOR TUNNEL INTERIOR LIGHTING</td>
<td>1083</td>
</tr>
<tr>
<td>PP133</td>
<td></td>
</tr>
<tr>
<td>Miyazaki, B. et al.</td>
<td></td>
</tr>
<tr>
<td>DETERIORATION PREDICTION IN CONSIDERATION OF THE DIFFERENCE IN LIGHTING TIME OF A TUNNEL LIGHTING EQUIPMENT</td>
<td>1092</td>
</tr>
<tr>
<td>D5 - Exterior Lighting</td>
<td></td>
</tr>
<tr>
<td>PP136</td>
<td></td>
</tr>
<tr>
<td>Wänström Lindh, U.</td>
<td></td>
</tr>
<tr>
<td>RHYTHM IN ILLUMINATION CREATED BY STATIC LIGHT PATTERNS</td>
<td>1101</td>
</tr>
<tr>
<td>Poster Presentations</td>
<td>Page</td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
</tr>
<tr>
<td>PP137 Djokic, L. et al.</td>
<td>1107</td>
</tr>
<tr>
<td>SUBJECTIVE IMPRESSIONS AS QUALITY INDICATORS OF AMBIENT LIGHTING</td>
<td></td>
</tr>
<tr>
<td>PP139 Zou, N. et al.</td>
<td>1112</td>
</tr>
<tr>
<td>INVESTIGATION ON RESIDENTIAL LIGHTING STATUS IN PART AREA OF CHINA</td>
<td></td>
</tr>
<tr>
<td>PP141 Song, G., Yan, C. J.</td>
<td>1116</td>
</tr>
<tr>
<td>THE QUALITATIVE EVALUATION OF LIGHTING QUALITY IN URBAN SQUARE LIGHTING</td>
<td></td>
</tr>
<tr>
<td>PP143 Corten, I.</td>
<td>1124</td>
</tr>
<tr>
<td>LIGHT AND PARTICIPATION NIGHT EXPLORATORY WALKING</td>
<td></td>
</tr>
<tr>
<td>D6 - Photobiology</td>
<td></td>
</tr>
<tr>
<td>PP145 Noguchi, H. et al.</td>
<td>1127</td>
</tr>
<tr>
<td>ECO-FRIENDLY COLOR TUNABLE LED OFFICE LIGHTING INCORPORATING CIRCADIAN PHYSIOLOGY</td>
<td></td>
</tr>
<tr>
<td>PP146 Takahashi, Y.</td>
<td>1131</td>
</tr>
<tr>
<td>RESEARCH TREND ON QUANTIFICATION SYSTEM FOR BIOLOGICAL CLOCK</td>
<td></td>
</tr>
<tr>
<td>PP149 Vincent, R.L. et al.</td>
<td>1135</td>
</tr>
<tr>
<td>COMPUTER AIDED DESIGN (CAD) FOR APPLYING UPPER ROOM UVGI FIXTURES TO CONTROL AIRBORNE DISEASE TRANSMISSION</td>
<td></td>
</tr>
<tr>
<td>PP152 Ishii, C. Mochizuki, E.</td>
<td>1144</td>
</tr>
<tr>
<td>COMBINED EFFECTS ON SLEEPING QUALITY OF LIGHTING ENVIRONMENT IN THE DAYTIME AND THAT IN THE NIGHT TIME</td>
<td></td>
</tr>
<tr>
<td>PP153 Lim, J.-M. et al.</td>
<td>1153</td>
</tr>
<tr>
<td>A STUDY ON DEVELOPMENT AND PERFORMANCE OF LIGHT SOURCE’S UV-IR WAVELENGTH BLOCKING FILTER</td>
<td></td>
</tr>
<tr>
<td>PP154 Diethelm, B.</td>
<td>1162</td>
</tr>
<tr>
<td>LIGHT IN THE BODY - BODY IN THE LIGHT REVISIONING THE BALANCE OF LIGHT AND DARK</td>
<td></td>
</tr>
<tr>
<td>PP155 Sliney, D.H., Lyon, T.L.</td>
<td>1168</td>
</tr>
<tr>
<td>BALANCING BENEFITS WITH EXPOSURE RISKS OF ULTRAVIOLET EMISSIONS FROM LAMPS</td>
<td></td>
</tr>
<tr>
<td>PP156 Lang, D., Wojtysiak, A.</td>
<td>1176</td>
</tr>
<tr>
<td>MELANOPIC ASSESSMENT OF LIGHT – STANDARDIZATION ACTIVITIES</td>
<td></td>
</tr>
<tr>
<td>PP157 Umemiya, N. et al.</td>
<td>1180</td>
</tr>
<tr>
<td>MOOD STATES AND LIGHT ENVIRONMENT EVALUATION</td>
<td></td>
</tr>
<tr>
<td>Paper</td>
<td>Title</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>PP159</td>
<td>Spectral Reflectance Measurements on Vervet Monkey Pelts</td>
</tr>
<tr>
<td>PP160</td>
<td>LED Light Supplement Technique for Indoor Plants</td>
</tr>
<tr>
<td>PP161</td>
<td>Optimal Illumination of Plants in Growth Chambers with Low Energy Demand</td>
</tr>
<tr>
<td>PP162</td>
<td>Evaluation of Illumination Using Digital Photography</td>
</tr>
<tr>
<td>PP163</td>
<td>Toward a Valid Image Processing System Through Colour Standards</td>
</tr>
<tr>
<td>PP164</td>
<td>Eye-Tracking for 3D-Application: Gaze-Point Detection Taking into Consideration Disparity</td>
</tr>
<tr>
<td>PP165</td>
<td>Development of Generic Colorimetry System for Lighting Environment by Using CCD Camera</td>
</tr>
</tbody>
</table>

ADDENDUM 1 (2013-06)

<table>
<thead>
<tr>
<th>Paper</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP065</td>
<td>Subjective and Objective Assessment on LED Lighting Quality for Museum Showcases</td>
<td>Piccablotto, G. et al.</td>
<td>1240</td>
</tr>
<tr>
<td>PP084</td>
<td>A Graphical Tool to Predict the Daylight Availability Within a Room at the Earliest Design Stages</td>
<td>Pellegrino, A. et al.</td>
<td>1250</td>
</tr>
<tr>
<td>PP114</td>
<td>In Depth Inventory for a Higher Quality of Street Lighting</td>
<td>Markey, Y., Deswert, J.-M.</td>
<td>1261</td>
</tr>
</tbody>
</table>